Arranging 10 Objects

You will need 10 small objects such as pennies or buttons. Arrange the objects in different ways.

Example:

$$
4+3+2+1=10
$$

1 Show how you grouped your objects.
Write an equation that describes your arrangement.

2 Show how you grouped your objects.
Write an equation that describes your arrangement.

NOTE

Students find combinations of numbers that equal 10. There are many possible solutions.
MWI Adding Within 20

Today's Number: 15

Today's Number is $\underline{15}$.

$$
\begin{aligned}
& 10+5 \\
& 10+4+1 \\
& 20-5
\end{aligned}
$$

1 Show different ways to make Today's Number.
\square
2. Write the number word for 15 . \qquad
NOTE
Students write expressions that are equal to Today's Number, and write Today's Number in words. MWI Equations and Equivalent Expressions

Number Strings at Home

Use combinations you know to solve these problems. Show your work.

1) $6+7+5+6+3=$
$28+3+4+6+2=$

NOTE

Students solve two problems with several addends. Encourage your child to use combinations he or she knows and to record all work.
NWI Number Strings

How Much Money?

How much money is in each box? Write an equation.

1	
2	
3	

NOTE

Students practice counting money.
NWI Money

NAME

Pockets at Home

Tell your family about Pocket Day.
Find out how many pockets each person is wearing.
Then, figure out how many pockets your family is wearing altogether. You can guess first.

If you need more space, use the back of this page.

Person	Number of Pockets

My family is wearing \qquad pockets altogether. Here is how I figured it out.
\square

NOTE

Students collect and record data about how many pockets people are wearing.
They combine several numbers to find the total number of pockets.
NWI Ways to Count

Birds in the Tree

Solve the problem. Show your work.
Write an equation.
There are 7 birds in the tree.
13 more birds fly to the tree.
How many birds are there in all?

\square

How Many Ducks?

Solve the problem. Show your work.
Write an equation.
Yesterday, Sally went to the park.
She saw 19 ducks in the air and
14 ducks in the pond.
How many ducks did she see?

\square

NOTE

Students solve a story problem about combining two quantities.
MWI An Addition Story Problem about Children

NAME

The Shape of a Face

Find three-dimensional (3-D) objects in your home that have these shapes as one of their faces. Draw a picture of the object and show the matching face. For the last object, draw in your own shape.

NOTE
Students have been identifying the 2-D faces of 3-D shapes. Students find 3-D shapes at home that have certain 2-D faces.
MWI Geometry and Shapes in the World

NAME

Shapes at Home

Draw pictures of at least 5 shapes that you find at home. Write the name of each object and what shape it is.

Example:	
Adoor is shaped rectangle.	

Students have been identifying and working with different types of 2-D and 3-D shapes.
Students identify shapes at home, draw them, and record their names.
MWI Geometry and Shapes in the World

Identifying Different Types of Quadrilaterals

Color the shapes that have 4 sides and 4 right angles blue. Color the shapes that have 4 sides, but not 4 right angles, red.

NOTE
Students sort shapes into two categories: " 4 Sides and 4 Right Angles" and " 4 Sides, but Not 4 Right Angles." Students identify these groups of shapes and color them either blue or red.
MWI Quadrilaterals: Shapes With 4 Sides

Building Rectangles

Cut out the square tiles on Building Rectangles (S27). Use the tiles to make rectangles. For each problem, draw all of the rectangles you make with that number of tiles.

Use 2 tiles.	Use 3 tiles.
Use 4 tiles.	

NOTE

Today in class, students used square tiles to make different-sized rectangles. Tonight, students will work on a similar activity.
MWI Rectangles and Squares

Building Rectangles

Use the tiles you already cut to make rectangles. For each problem, draw all of the rectangles you make with that number of tiles.
Use 6 tiles.

Building Rectangles

Use the tiles you already cut to make rectangles. For each problem, draw all of the rectangles you make with that number of tiles.

Use 10 tiles.

Use 11 tiles.

Use 12 tiles.

Different Shapes: Halves and Fourths

1 Find three different ways to divide these squares into fourths.

1

2

3

2 In Square 1, color one half red.
What fraction of the square is not colored? \qquad

3 In Square 2, color one half green and one fourth blue.

What fraction of the square is not colored? \qquad

4 In Square 3, color the whole square yellow.
How many fourths are colored? \qquad

Pizza Fractions

1 Use a fraction word to label each part of the pizza.
Color one part red.
Color one part blue.
Color one part green.

a. What fraction of the pizza is red? \qquad
b. What fraction of the pizza is blue? \qquad
c. What fraction of the pizza is green? \qquad

2 Circle the pizza that is cut into thirds.

Explain why you think this pizza is cut into thirds.
\qquad
\qquad
\qquad
\qquad
NOTE
Students use what they know about fractions to answer questions.
MWI One Third

How Many Stickers? 2

How many stickers? \qquad How many stickers? \qquad
3 Stickers come in strips of 10 or singles. How many ways can you find to make 45 stickers?

NOTE
Students use place value (tens and ones) to identify and represent numbers.
MWI Sticker Station: Tens and Ones

How Many Stickers? 2

4 Stickers come in strips of 10 or singles. Show one way to make 78 stickers.

How Many More?

1 Jake has 53 fish stickers. Color in the grid and write an equation to show how many fish stickers Jake has.

Equation:

2 How many more fish stickers does Jake need to have 90 fish stickers?

NOTE

How Many More?

3 Sally is collecting dragon stickers. How many dragon stickers does Sally have?

Equation:

4 How many more stickers does she need to have 80 dragon stickers?
Close to 20 Recording Sheet
Game
Round 1 .
Round 2:
Round 3:
Round 5:
TOTAL SCORE

Close to $\mathbf{2 0}$ Recording Sheet
Game
Total Score

Close to 20 Directions

You need

o deck of Primary
Number Cards
(without Wild

Cards)

- Close to 20 Recording Sheet
(1 per player)
o connecting cubes (or pennies)

Play with a partner.

1 Deal 5 cards to each player.
2 Take turns. On each turn:

- Choose 3 cards that make a total as close to 20 as possible.
- Record the total of the 3 cards, and your score. Your score is the difference between your total and 20.
- Take that many cubes.
- Put those cards aside and take 3 new cards.
3 After each player has taken 5 turns, total your score.
4 Count your cubes. You should have the same number of cubes as your total score.
5 The player with the lowest total score is the winner.

More Ways to Play

- Play with the Wild Cards. A Wild Card can be any number.

Did They Get To 100?

Sally and Jake were playing Get To 100. Add the numbers for each game to see whether they really did get to 100 .

Game 1:

$20+15+10+10+20+5+10$

Did they get to 100 ? \qquad
If not, how much more do they need to get to 100 ?
Game 2:
$15+10+15+15+10+5+10+15+5$

Did they get to 100 ?
If not, how much more do they need to get to 100 ? \qquad

NOTE

Did They Get To 100?

Game 3:
$10+15+20+10+20+5+10+5+5$

Did they get to 100 ?
If not, how much more do they need to get to 100 ? \qquad

Game 4:

$15+10+15+15+10+5+10+5$

Did they get to 100 ? \qquad
If not, how much more do they need to get to 100 ?

Sticker Problems at Home

Write an equation. Then solve the problem and show your work.

1 Franco went to Sticker Station. He bought 1 strip of ten sun stickers and 5 single sun
 stickers. He also bought 2 strips of ten moon stickers and 1 single moon sticker. How many stickers did Franco buy?

2 Sally collects sports stickers. At Sticker Station she bought 1 strip of ten soccer stickers and 2 single soccer stickers. She
 also bought 3 strips of ten basketball stickers and 2 single basketball stickers. How many stickers did Sally buy?

NOTE

Students solve problems about Sticker Station, a store that sells stickers in strips of 10 and individually as singles. These problems focus on place value and adding 10 s and 1 s .
MWI Sticker Station: Tens and Ones

Sticker Problems at Home

3 Jake collects animal stickers. At Sticker Station he bought 2 strips of ten bird stickers and 3 single bird stickers. He also bought 1 strip of ten fish stickers and 4 single fish stickers. How many stickers did Jake buy?

4 Kira went to Sticker Station. She bought 3 strips of ten kite stickers and 1 single kite sticker. She also bought 1 strip of ten car stickers and 7 single car stickers. How many stickers did Kira buy?

Fish Stickers

Solve the problem. Show your work.
Write an equation.
1 Sally has 22 fish stickers. She goes to Sticker Station and buys some more fish stickers. She now has 35 fish stickers. How many fish
 stickers did Sally buy?

NOTE

Students solve a story problem with an unknown change about stickers.
MWI A Story Problem About an Unknown Change: Combining

Star Stickers

Solve the problem. Show your work.
Franco had some star stickers. He went to Sticker Station and bought 1 strip of ten star stickers and 4 single star stickers. Now he has 19 star stickers. How many star stickers did
 Franco start with?
\square

NOTE
Students solve a story problem with start unknown about stickers.
MWI A Story Problem About an Unknown Start: Combining

Guess My Rule at Home

Play several games with a family member or a friend.
1 Collect 20 small objects, for example, a pencil, a paper clip, a stone, a button, or a penny.
2 Choose a rule that fits some of the objects.
3 Put two objects that fit your rule in the circle. Put two objects that do not fit your rule outside the circle.

4 Your partner does not guess your rule yet. Your partner puts another object where he or she thinks it belongs.
5 Tell your partner whether he or she is correct. Put any misplaced objects where they belong.

6 Repeat Steps 4 and 5 until almost all the objects are placed in the circle or outside the circle.

7 Then your partner guesses your rule.
8 Now your partner chooses a rule and you play again.
What rules did you use when you played?
1
2
3
4

NOTE
Students have been playing the game "Guess My Rule" with their class. For homework, students play "Guess My Rule" with a family member or a friend. You can play with one rule using the circle or with two rules using the Venn diagram.

[^0]Circle for Guess My Rule

Venn Diagram for Guess My Rule

Favorite Sports

Sally took a survey of her classmates' favorite sport. The picture graph shows her data.

| Soccer | 3636 |
| :--- | :--- | :--- |
| Basketball | 000 |
| Hockey | 000 |

1 How many students like hockey best?
2 How many students like soccer best?
3 Do more students like basketball or hockey? How many more? \qquad
4 How many fewer students like hockey than like soccer? \qquad
5 More students like \qquad than any other sport.

6 How many students answered the survey? \qquad
NOTE
Students interpret data presented in a picture graph.
NWII Data on a Picture Graph

How Many Pockets in All?

1 Fill in a class list with the number of pockets each person is wearing.

2 Figure out the total number of pockets in class today.

Show your work. Write an equation.

Total number of pockets in the class:

Students have been collecting data about the number of pockets their classmates are wearing. For homework, students will figure out the total number of pockets worn by their classmates using the data they have collected.
MWI Equations and Equivalent Expressions

How Many Teeth?

Survey 2 or 3 of your brothers, sisters, cousins, or friends who are in elementary school to find out how many teeth they have lost. We will use this information during math time.

Name
Grade
Number of Teeth Lost

Plus 9 or Minus 9 Bingo
 Gameboard

7	21	2	8	4	16
3	10	19	14	25	9
1	12	20	11	6	29
9	13	11	28	22	10
0	9	27	23	15	11
17	5	10	18	24	26

Plus 9 or Minus 9 Bingo

Directions

You need

- Plus 9 or Minus 9 Bingo Gameboard (SAB p. 303)
- Counters
- 0-20 Cards
(without Wild Cards)

> | 10 | 15 | 2 |
| :--- | :--- | :--- |

Play with a partner. Work together.
1 Turn over one 0-20 card. 11

Plus 9 or Minus 9 Bingo
Gameboard

7	21	2	8	4	16
3	10	19	14	25	9
1	12	20	11	6	29
9	13	11	28	22	10
0	9	27	23	15	11
17	5	10	18	24	26

2 Find the results of adding and subtracting 9 to/from that number.

$$
11+9=20 \quad 11-9=2
$$

3 Cover one of the answers on your gameboard. (If both are already covered, discard the card, and turn over a new card.)

7	21	2	8	4	16
3	10	19	14	25	9
1	12		11	6	29

4 Place the number card in the discard pile.
5 Continue playing until all numbers in one row are covered. The numbers can go across \square, down corner to corner

More Ways to Play

- Play with Wild Cards. A Wild Card can be any number.
- Play against your partner. Each player uses a different color counter.

Writing Equations for Capture 5

1 Sally's game piece was on 58.
She used these cards to capture a chip:
$\boxed{+2} \boxed{+30} \boxed{+2}$

Where did she land?
Write an equation to show her moves.
Equation: \qquad

2 Franco's game piece was on 19.
He used these cards to capture a chip:

+30
-10

Where did he land?
Write an equation to show his moves.

Equation:

\qquad

NOTE
This homework is based on a math game that students have been playing in which they practice adding and subtracting tens and ones and writing equations.
MWI Equations and Equivalent Expressions

Problems for Close to 100

Suppose that you are dealt these hands in the game Close to 100.
Make two 2-digit numbers that you could use to get a sum as close to 100 as possible.

NOTE
Students practice finding pairs of 2-digit numbers that add as close to 100 as they can. Ask your child to explain how he or she chose which cards to use.
NWI Ways to Make 100

3-Digit Numbers

1 Find the total number of stickers.
Write an equation that shows the number of hundreds, tens, and ones.

Sticker notation:

Total number of stickers: \qquad

Equation:

\qquad
2 Use sticker notation to show 725. Write an equation that shows the number of hundreds, tens, and ones.

Sticker notation:

Equation: \qquad

NOTE
Students show numbers using sticker notation, equations, and numerals.
NWI Representing Place Value: Hundreds, Tens, and Ones

Addition at Home

Write an equation. Solve the problem.
Show your work.
1 Jake had 39 pennies. His mother gave him 22 more pennies. How many pennies does he have now?

\square
2 Sally had 24 stamps. Jake gave her 67 more stamps. How many stamps does she have now?

\square

NOTE

Students solve story problems and then write and solve their own story problem to match a given equation.
NWI Story Problems About Comparing: Bigger Unknown

Addition at Home

3 Write a story that matches the equation below. $38+42=$ \qquad

4 Solve the problem. Show your work.

Prize Tickets

At the spring fair, Kira wins 200 prize tickets.
1 Which prizes could she get with
 100 tickets?

	Hat: 45 tickets	Ball: 20 tickets
	Frog: 10 tickets	Eraser: 5 tickets

Show your work. Write an equation.

NOTE
Students solve real-world problems involving the math content of this unit.
MWI Ways to Make 100

Prize Tickets

2 Which of these prizes could Kira get with the other 100 tickets?

Ko-yo: 25 tickets	Pinwheel: 15 tickets 10 tickets
	Jacks: 20 tickets
	Pencil: 5 tickets

Show your work. Write an equation.

How Much Longer?

Use the information from your class to fill in the blanks.
1 The longest jump in the class was
\qquad cubes.

2 The shortest jump in the class was
\qquad cubes.

3 How much longer was the longest jump than the shortest jump?
Write an equation that shows the problem.
Solve the problem and show your work.

NOTE

Students compare measurements to find the shortest and longest jumps, and then find the difference between them.

Measuring with Inch-Bricks at Home

Use your inch-bricks to measure things at home. If you want, cut out the measuring tool below. Then glue the inch-bricks onto the measuring tool.

1 Find something that is 6 inch-bricks long. What is it? \qquad

2 Find something that is 3 inch-bricks long. What is it? \qquad

3 How long is your toothpaste tube?
\qquad inch-bricks

4 How long is a bar of soap?
\qquad inch-bricks

5 How long is a spoon?
\qquad inch-bricks

Measuring Tool:

NOTE

Students use inch-bricks to measure objects at home.
NWI Using a Common Unit; Different Ways to Measure Length

Comparing Measurements

Circle the taller person and answer the questions. Show your work.

		Jake's height: Jake's mom's height:	51 inches 65 inches
	How much taller? ___ inches		
2	$\left.\left.\right\|^{8}\right\|^{\text {a }}$	Kira's height: Kira's dad's height:	52 inches 69 inches
	How much taller?	___ inches	

Think about all of the heights listed above.
3 What is the difference in height between the tallest and the shortest person?
Show your work.
\qquad inches

NOTE

Length and Width

Choose four rectangular objects at home. Use body benchmarks to estimate the length and the width of each object. Then use a ruler to measure the length and width in inches.

First Object

Name of the object: \qquad
Estimated Length: \qquad
Estimated Width: \qquad _

Measured Length: \qquad
Measured Width: \qquad
Explain how you used body benchmarks to estimate.

Second Object

Name of the object: \qquad
Estimated Length: \qquad Measured Length: \qquad
Estimated Width: \qquad Measured Width: \qquad
Explain how you used body benchmarks to estimate.

NOTE

Students use body benchmarks to estimate and then a ruler to measure the length and width of four different objects.
WWI Measurement Tools: Rulers

Length and Width

Third Object

Name of the object:
Estimated Length: \qquad Measured Length: \qquad
Estimated Width: \qquad Measured Width: \qquad Explain how you used body benchmarks to estimate.
\qquad
\qquad
Fourth Object
Name of the object: \qquad

Estimated Length: \qquad
Estimated Width: \qquad

Measured Length: \qquad
Measured Width: \qquad
Explain how you used body benchmarks to estimate.

Metric Scavenger Hunt at Home

Use your paper meter strip or a meterstick.
Find things around your house that are 1 meter long and 1 centimeter long.

1 Things I found that are about 1 meter long:

2 Things I found that are about
1 centimeter long:
***Don't forget to bring your homework and your paper meter strip back to school!

NOTE
Students measure objects that are 1 meter long and 1 centimeter long. They should bring this page and their paper meter strip back to school.
NWI Metric System

Problems about Partners and Teams

Solve each problem. Show your work.
13 children are taking an art class. If they pair off, will everyone have a partner?

2 There are 14 children on the playground. Can they make two equal teams to play kickball?

Pairs of Socks

Solve each problem. Write an equation that shows the equal groups.

1 Jake has 3 pairs of socks. How many socks does he have? \qquad

2 Kira has 5 pairs of socks. How many socks does she have? \qquad

Practice with Arrays

Write the equations that describe each array.
Some arrays have more than one equation.
Example: $2+2+2+2=8$

$$
4+4=8
$$

NOTE

Students identify addition equations to represent arrays.
MWI Rectangular Arrays

Paper Clips

Write an equation. Solve the problem.
Show your work.
Sally and Kira have some paper clips. Sally has
 36 paper clips. Kira has 20 fewer than Sally. How many paper clips does Kira have?

Pennies and Paper Clips

Write an equation. Solve the problem.
Show your work.
1 Franco had 100 pennies. He used 67 of them to buy a baseball card.
How many pennies does he have left?

\square
2. There were 100 paper clips in the box. Kira pinched 52 of them. How many paper clips are left in the box?

\square

NOTE

Students practice subtracting amounts from 100.
MWI Ways to Make 100; Story Problems About Comparing: Smaller Unknown

Pennies and Paper Clips

Write an equation. Solve the problem.
Show your work.
3 Sally had 100 pennies.
She gave 26 of them to her brother. How many pennies does Sally have now?

\square
4 There were 100 paper clips in the box. Jake pinched 19 of them. How many paper clips are left in the box?

Stickers to Share

Write an equation. Solve the problem.
Show your work.
1 Jake had 82 butterfly stickers. He gave 46 of them to Sally. How many butterfly stickers does he have left?

\square
2 Sally had 71 baseball stickers. She gave 33 of them to Kira. How many baseball stickers does she have left?
\square

NOTE

Students solve subtraction story problems.
NWI Strategies for Subtracting 2-Digit Numbers

Combining Sets of Stickers

Problem 1

Kira has 218 stickers. Show them:	Franco has 360 stickers. Show them:
Equation:	Equation:

If Kira and Franco combine their sets, how many stickers will they have in all?
Use equations to show your work.

NOTE

Students combine two numbers to determine the total number of stickers.
MWI Strategies for Adding 3-Digit Numbers

Cover Up at Home

Play Cover Up with someone at home.
1 Choose a number between 11 and 19, and count out that many counters (pennies, paper clips).

2 Player 1 hides some of the counters under a piece of paper, while Player 2 hides his/her eyes.

3 Player 2 opens his/her eyes. They use the information about how many counters are showing to figure out how many are hidden. They explain how they know.

4 Player 2 hides some of the counters and Player 1 figures out how many are hidden.

5 Keep taking turns. Use an equation to record each round.

I played Cover Up with \qquad .
We played with \qquad counters.
Round 1:
Round 2:
Round 3:
Round 4:
Round 5:
Round 6:

How Many Stickers?
 Kira has 458 cow stickers.

1 Show Kira's stickers.

2 She gives 132 of her stickers to Franco.
Write an equation that represents the problem.

3 How many does she have left? Solve the problem. You can use your sticker drawing to help you. Use equations to show your work.

NOTE

Students solve a problem involving subtraction of 3-digit numbers.
MWI Strategies for Subtracting 3-Digit Numbers

[^0]: MWI Venn Diagrams

